⁽¹⁾ Bureau de Recherches Géologiques et Minières

⁽²⁾ Universtity of Patras, Greece

Partially financed by the Agence Nationale de la Recherche, ANR, under project MODULATE:

modulate.brgm.fr

Nonlinear response of high-rise buildings subjected to rocking motion induced by passage of Rayleigh waves

Kristel MEZA FAJARDO⁽¹⁾ & Apostolos PAPAGEORGIOU⁽²⁾ k.mezafajardo@brgm.fr

Summary

In the present work we investigate the impact of rocking due to Rayleigh wave passage on ductility demands of several high-rise buildings. The buildings are modeled with a flexure-shear coupled-beam. We expand this analytical model to introduce interaction with a flexible underlying soil. We also take into account the stiffness reduction (damage) of the building using a rigid-elastic rotational spring at its base.

Structural model

- Flexural deformation (due to connection rotation), characteristic of tall buildings, is allowed using a Euler-Bernoulli beam.
- Soil-structure interaction is implemented using impulse response functions of a massless circular disk supported in a viscoelastic half-space.

Inelastic rotation $\varphi(t)$

- Superstructure remains elastic except at its base.
- When the base moment Mb exceeds the yield point, an inelastic rotation $\varphi(t)$ starts accumulating.

Selected buildings

The first 5 building modes are considered for the dynamic response

No.	Symbol	Height	Period (s)	$c_s(m/s)$	No.	Symbol	Height	Period (s)	$c_s(m/s)$
		(111)			• 1				
1	•	13.50	0.22	214	21		130.66	1.84	408
2		13.50	0.15	214	22		15.24	0.67	805
3	*	13.07	0.71	153	23	*	15.24	0.66	805
4	A	17.42	0.52	265	24		17.42	0.69	305
5		17.42	0.28	195	25		17.42	0.71	305
6	•	27.44	0.37	341	26	•	24.39	0.82	192
7	•	27.44	0.26	341	27	٠	75.78	3.2	354
8	•	30.05	0.53	270	28	•	75.78	3.1	354
9	*	28.75	0.97	279	29	*	95.82	3.45	299
10	•	39.63	0.9	348	30	•	95.82	3.89	299
11	•	94.95	2.45	137	31	•	33.97	0.92	299
12	•	94.95	2.65	137	32	•	30.49	1.54	223
13	*	23.52	0.5	141	33	*	31.36	1.32	242
14	A	23.52	1.25	141	34		31.36	1.22	242
15		24.39	0.66	212	35		32.23	2.01	259
16	•	24.39	0.64	212	36	•	32.23	2.08	259
17	•	36.59	1.11	674	37	٠	180.31	5.03	146
18	-	36.59	0.85	674	38	-	47.47	2.13	221
19	*	38.76	1.25	268	39	*	47.47	2.17	221
20		13.50	1.04	268	40	•	180.31	5.7	402

Building response to Rayleigh waves

- We use time histories of *recorded* translation and rocking
- Rocking is computed separately for body and Rayleigh waves

Response with vs without Rayleigh waves

We evaluate the ratio:

1.2

40

Response is evaluated in terms of ductility demand µ

Ductility with R-waves / Ductility without R-waves

- For structures yielding at higher drift ratios DRy, the ductility demands are smaller under intense ground motion.
- Response with Rayleigh waves can be as high as 10 times the building response without Rwaves
- We conclude that Rayleigh waves contribute dominantly in the overall response of tall buildings.

